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Abstract

Crystal ovens designed to have zero or near-zero ther-
mal gradients within the oven mass are described both
from a theoretical viewpoint, and with actual examples.
Thermal gains of well over 100,000 in a single oven with
a height of only 19 mm. ( 3

4  inch) have been demon-
strated experimentally.  Conventional ovens often have
one or two point sources of heat and rely on high ther-
mal conductance in the oven mass to achieve a tem-
perature profile that is roughly isothermal.  Unavoidable
residual thermal gradients limit the achievable thermal
gain to a few thousand, and in only a small area.  By
using distributed heaters that match the heat loss distri-
bution, the oven mass can be maintained arbitrarily
close to a zero gradient state with resultant high thermal
gain over most of its volume.  An idealized strawman
oven with spherical symmetry is used to establish the
basic principles of zero gradient ovens.  These are then
applied to a practical oven configuration having cylin-
drical symmetry.  A finite element analysis of this oven is
presented.  Experimental results of actual ovens are
given.

Conventional ovens

Modern crystal ovens often consist of a block or
plate of high thermal conductivity material (known as
the oven mass) to which the crystal is mounted.  The
oven mass is generally heated by one or two transistors.
The oven mass nominally represents an isothermal vol-
ume, the temperature of which is sensed by a thermistor.
Temperature control electronics servo the heaters to at-
tempt to maintain the thermistor at a constant tempera-
ture, known as the oven set point.  If the electronics are
perfect (i.e., the thermistor temperature is invariant),
then the stability of the oven with respect to varying am-
bient temperatures will be determined by how closely the
crystal temperature tracks the thermistor temperature.

Hence, the object of good oven design is to minimize
crystal/thermistor tracking error.

The root cause of tracking error is the tempera-
ture difference between the thermistor and the crystal
caused by temperature gradients within the oven mass.
The point(s) of attachment of the heater(s) will always be
the hottest place(s) on the oven mass.  The coolest point
will tend to be farthest away from the heaters and/or
closest to the location of greatest heat loss, with interme-
diate temperatures elsewhere.  The temperature gradients
can be minimized by making the oven mass as thick as
possible and using the most conductive materials, such as
copper or aluminum.  Similarly, the insulation should be
as thick as possible, and made of material having the
highest thermal resistance, such as low density foam.
Most well designed ovens already utilize these brute
force techniques to near their limit, given size con-
straints, and thus cannot be significantly improved by
further application of these principles.  For practical ov-
ens of conventional design, the maximum gradient
across the whole oven mass will be on the order of one
percent of the difference between the set point and ambi-
ent and is proportional to heater power, which is ap-
proximately linear with ambient temperature.

The thermistor and the crystal locations must
then be chosen somewhere within this collection of gra-
dients.  Generally, the tracking error is minimized by
maximizing the thermal coupling between the crystal
and thermistor by locating them as close together as pos-
sible.  For good oven servo loop stability, the thermistor
should be closely coupled to the oven heater.  Thus there
are conflicting requirements on the thermistor placement
and the designs always involve a compromise.  The
thermal gradients in any oven will form a pattern of iso-
thermal surfaces perpendicular to the temperature gradi-
ents.
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An additional refinement is to attempt to ar-
range for the crystal and thermistor to lie on the same
isothermal surface, if such a surface is predictable and
repeatable.  For example, if the oven design is such that
there is always a temperature gradient in the x direction,
the crystal and thermistor should lie on a line perpen-
dicular to the x-axis.  The ultimate extension of this con-
cept is probably a technique where two heater transistors
are used with an adjustable power ratio between them
[1].  This ratio can be chosen to shape the isothermal
surfaces in such a way as to have one of them contain
both the crystal and the thermistor.   This results in the
behavior shown in fig. 1.
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Figure 1.  Thermal gain vs. heat ratio.

There are various limitations to this technique.
The isothermal surfaces have zero thickness, hence the
crystal and thermistor, being of nonzero volume, each
occupy a range of isothermal surfaces, which in general
will not exactly coincide.  Also, the location of isother-
mal surfaces changes as a function of ambient tempera-
ture, and the external environment of the oven. They are
also affected by the thermal resistance from the heater
transistors to the oven mass, which is not very well con-
trolled.  The result of all these errors is to limit this tech-
nique to a thermal gain of about 5,000, where thermal
gain is defined as the ratio of the change in ambient
temperature to the change in crystal temperature.

With the highest thermal gain location in the
oven mass having been assigned to the crystal, the oscil-
lator circuit, if it is to be ovenized, will necessarily have

to operate at significantly reduced gain.  This can result
in the overall oscillator temperature stability being lim-
ited by the temperature sensitivity of the circuitry [2].

Summarizing, conventional ovens operate with
significant built-in gradients.  These gradients are mini-
mized using the brute force techniques of maximizing
oven mass thermal conductance and minimizing insula-
tion thermal conductance.  The degradation due to the
remaining gradients is then mitigated by attempting to
control the shape of the gradients so that the crystal and
thermistor happen to be at the same temperature.  The
difficulty of controlling the gradients is the limiting fac-
tor in thermal gain.  In this paper, a different approach
will be used.  A state of ideally zero temperature gradient
will be achieved by proper heater and insulation configu-
ration, not merely by brute force.  It will be shown that it
is easier to force gradients to zero, rather than a constant,
but non-zero value.

A strawman spherical oven in free space
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Figure 2.  Ideal spherical oven.

It is instructive to begin the discussion of zero
gradient ovens with an ideal (though impractical) oven
having spherical symmetry (fig. 2) [2].  A spherical oven
mass is covered with a uniform surface heater and en-
closed in a spherical shell of uniform insulation.  This
shell is assumed for now to be in free space.  Because
spherical symmetry is maintained everywhere, there is no
tangential heat flow anywhere, hence no tangential gra-
dients.  In the steady state, i.e. after warm up, the heat
flowing out through the insulation is balanced by the
heat supplied by the heater, on a point by point basis.
Hence, within the oven mass, there are no radial gradi-
ents, in addition to no tangential gradients.   The term
“zero gradient oven” as used in this paper refers to this
state of no gradients within the oven mass.  Of course
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there is a radial gradient through the insulation, which
spans the temperatures from the oven set point to the
outer insulation temperature.  This temperature will be
higher than ambient by an amount depending on the
ratio of the thermal resistances of the insulation proper to
the thermal resistance from the insulation outer surfaced
to free space.  Since there are no gradients within the
oven mass, the crystal and oscillator can be located any-
where inside it and do not have to be spherically sym-
metrical.  Similarly, the sensing thermistor can be lo-
cated at any arbitrary point in the oven mass.  If the oven
control circuitry does a perfect job of keeping the ther-
mistor at a constant temperature independent of ambient,
then the strawman oven will have infinite thermal gain.
At this point in the analysis, it is irrelevant what the con-
struction of the oven mass is (i.e. type and amount of
material).  For the purposes of this strawman, the practi-
cal problems of getting electrical connections to these
components have been ignored.

An additional issue is the heat generated by the
oscillator circuit (thermal overhead).  This problem can
be analyzed by superposition.  It will be assumed that the
thermal overhead power can be made to be independent
of ambient temperature, but is not necessarily distributed
symmetrically.  The effect of the thermal overhead by
itself is to simply generate a temperature offset between
the thermistor and the crystal.  Since the temperature
offset is a function of overhead power, which is assumed
to be constant, the offset is also independent of ambient.
Hence if the oven had infinite thermal gain in the ab-
sence of the overhead, it will continue to have it in the
presence of the overhead.  It is easy to make the thermal
overhead power essentially independent of ambient by
taking simple precautions, such as making sure the volt-
age regulator for the oscillator circuit is either ovenized
or has low tempco.

Although the offset caused by thermal overhead
doesn’t affect thermal gain, it potentially causes a set
point error, which could be important if the design calls
for the set point to coincide with a crystal turnover tem-
perature  (i.e., a temperature where the slope of crystal
frequency with respect to temperature is zero).  In prac-
tice, this error is rarely significant as far as the overall
performance is concerned; thermistor self heating often
causes a bigger offset.  The overhead is more important
due to its role in establishing the minimum heater power,

which determines how close the ambient temperature can
get to the set point before the oven goes out of regulation.
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Figure 3.  Effect of external heat source.

A spherical oven in a real environment

Suppose the oven described above is not in free
space, but in an environment having its own thermal
gradients. (fig 3)  These may be caused by external heat
sources, conduction via the mounting structure, thermal
radiation, or air flow, whether forced or due to convec-
tion.  The external heat sources simply add thermal
overhead, like the oscillator power dissipation.  If their
power were independent of ambient, as with the internal
overhead, they would not degrade the thermal gain.
Unfortunately, most heat sources vary with ambient and
hence produce a thermal gradient that varies with ambi-
ent.  It is this variation that causes the thermal gain to be
reduced.

For example, in fig. 3 if the heat source is lo-
cated on the bottom side of the oven, it will produce a
downward thermal gradient (i.e., temperature increases
for a displacement in the downward direction.)  If the
thermistor is located on the top side of the oven mass, the
heat source will cause the crystal to operate at a higher
temperature than the thermistor.  Since the oven con-
troller maintains the thermistor at a constant tempera-
ture, the crystal will have a positive temperature error
that is proportional to the magnitude of the external heat
source.  If the external heat source has increasing dissi-
pation with increasing ambient, this results in reducing
the thermal gain of an otherwise perfect oven from in-
finity to a finite positive value.  If the heat source power
vs ambient curve is negative, the thermal gain will be
changed from infinity to a finite negative value.  There is
nothing mysterious about negative thermal gain.  It sim-
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ply means that the oven overcompensates for ambient
variations.  If the configuration of fig. 3 is changed so
that the heat source and the thermistor are both on the
same side of the crystal, the sign of the thermal gain will
be reversed.  If the heat source is located to the side of
the oven, it will cause no temperature difference between
the crystal and thermistor, and hence will not reduce
thermal gain.

If there are multiple heat sources, their cumula-
tive effect on thermal gain may be analyzed by superpo-
sition, with one heat source active at a time.  The total
net thermal gain with all the sources active is then cal-
culated by taking the reciprocal of the sum of the recip-
rocals of the individual thermal gains.  The signs of the
individual gains are significant in determining the sum if
some are positive and some are negative, and hence par-
tially cancel each other out.  However, with respect to the
total net thermal gain, only the magnitude is significant
for most practical purposes.

The variation of heat source thermal power vs.
ambient temperature (if modeled as linear) has the same
units as thermal conductance:  W/°C.  This can be mod-
eled as the Norton equivalent conductance of the source
(fig. 4).  The effect of the heat source is the same as if
this admittance, in series with the oven mass to heat
source thermal conductance, were connected from the
oven mass to ambient.  In the example just cited, the
equivalent admittance is positive.  However, if the exter-
nal heat source has decreasing dissipation with increas-
ing ambient, the equivalent admittance is negative.  An
example of a source with a large negative equivalent
admittance is another oven oscillator.  This results in the
surprising conclusion that, when it comes to thermal
gain, it is a bad idea to locate a zero gradient oven near
another oven.  This runs contrary to the seemingly obvi-
ous notion that there ought to be beneficial synergy be-
tween nearby ovens, since heat given off by one helps to
heat the other.  (Although it is true that the synergy re-
duces power consumption slightly).  The heat source
power vs ambient temperature curve is in general non-
linear, thus the equivalent admittance is either a function
of ambient temperature or is a non-linear admittance,
depending on how it is modeled.

External heat leaks of a non-spherically sym-
metrical nature, such as convection of heat preferren-
tially off the top surface of the oven, can be modeled as

an effective thermal conductance.  These have the same
effect as the equivalent admittance of heat sources.  As
was the case with heat sources, the equivalent thermal
resistance of heat leaks is in general non-linear.  Cer-
tainly, both radiation and convection are well-known to
be non-linear effects.  Of course, basic principles of
thermodynamics dictate that passive heat leaks always
have positive conductance.

Gradients due to external perturbations can be
mitigated by adding an outer can of high thermal con-
ductivity material around the insulation (fig. 3.).  The
thermal effect of this can is analogous to a highly con-
ductive shield minimizing voltage gradients produced by
electric current flow.  Heat flow is shunted around the
insulation and oven mass, greatly reducing the thermal
gradients induced in them.  Fig. 4 illustrates this princi-
ple with a simple electrical model.  If the shunting con-
ductance of the can is much higher than the series con-
ductance of the insulation, the heat flow from an un-
symmetrical external source or leak will be equalized in
terms of directionality so that only a small asymmetrical
component remains.  The large symmetrical component
has no effect on thermal gain because it generates no
gradients within the oven mass, as explained previously.
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Figure 4.  Electrical/thermal analog model.

This paradigm contrasts to the outer can of a
conventional oven which is typically designed for various
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purposes, such as mechanical protection, magnetic
shielding, or acting as a hermetic envelope, but not usu-
ally for its thermal properties.  On the other hand, in a
practical zero gradient oven that has to operate in a real-
istic environment, the outer can becomes an integral part
of any high performance thermal design.  This concept
can be extended by using multiple nested cans separated
by thermal insulation.  Fig. 5 shows an oven with an
inner can bisecting the thermal insulation between the
outer can and the oven mass.  The electrical model of fig.
4 can be extended to multiple cans and used to show that
a given quantity of metal will be more effectively utilized
if divided between an outer can and an intermediate can
than if used exclusively for an outer can.

If two cans are to be used, the question arises:
why not add a heater and thermistor to the inner can and
turn the whole assembly into a double oven?  The draw-
backs to this are (1) a substantial increase in cost and
complexity, (2) an increase in power consumption on the
order of 2 because the insulation thickness is halved, and
(3) a reduction in the maximum operating ambient tem-
perature.  The two-can zero-gradient oven gives great
immunity to external perturbations for little additional
effort.  Whether it is necessary depends on the degree of
severity of the operating environment.

xtal inner can

outer can

insulation

T

Figure 5.  Double can oven.

Multiple thermistor sensing

The analysis at this point has been of an oven
having spherical symmetry, with the exception of the
asymmetry of the single thermistor.  The spherical sym-
metry could be restored by replacing the thermistor with
some sort of temperature sensor having uniformly dis-

tributed sensitivity over the entire surface of the oven
mass.  If the oven controller held the temperature output
of this sensor constant, it would result in the average
surface temperature of the oven mass being held con-
stant.  If this were the case, the effect of temperature gra-
dients would depend on the relationship between the
crystal temperature and the oven mass.  If the crystal
were located at the center of the oven, its temperature
would tend to track the average surface temperature of
the oven mass, assuming there were no great asymme-
tries within the oven mass.  Hence, in a way, the uni-
formly sensed oven mass acts like another nested can
inside the outer and inner (if any) cans.

A uniform sensing device can be approximated
by using several thermistors on the surface of the oven
mass.  To analyze the complicated effect of gradients on
a uniform sensor array, it is convenient to use a rectan-
gular coordinate system and initially assume a uniform,
plane-type gradient across the entire oven mass.  In this
case, superposition analysis can be used to decompose
the gradient into x, y, and z components.  Suppose a two
thermistor averaging array is used, with the thermistors
located on the x axis on opposite sides of the oven mass.
The x-axis is an isotherm for the y and z components, so
they contribute no error (fig. 6).  The component in the x
direction results in the thermistors’ temperatures having
equal and opposite offsets from the temperature at the
center of the oven mass. The error due to the x compo-
nent is cancelled out to the extent that the effective loca-
tion of the crystal is centered between the thermistors.
Therefore, two thermistors are sufficient for first order
gradient correction.

T T
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xtal
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y

z

∆ tx = -kx ∆ tx = +kx

∆ tz=0

thermistor: thermistor:
∆ ty=0

Figure 6.  Thermistor temperature averaging.

A local heat source located close to the oven
will tend to produce a gradient of non-uniform magni-
tude that can be approximated by a plane-type gradient
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with linearly decreasing magnitude going away from the
source (fig. 7).  If this gradient happens to be perpen-
dicular to the line on which the thermistors lie, it will
cause no error.  If not, there will be a second order error.
Superposition analysis cannot be used in this case, but it
can be shown that the error can be decreased by using 3,
4, or 6 thermistors in a symmetrical array.  The error is
approximately inversely proportional to the number of
thermistors used up, to 6.  However, in practical ovens
with substantial outer cans, these second order errors
may not be large enough to require the complexity of
extra thermistors .

heat
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isothermal shells
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zone

medium
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Figure 7.  Positionally dependent gradients.

The performance of the strawman spherical
oven has been analyzed and techniques for mitigating
possible errors have been presented.  Many of the princi-
ples developed here for the spherical case will also be
applicable, in modified form, to the cylindrical oven,
which is the ultimate goal.

The infinite radius cylindrical oven

Before examining a cylindrical oven, it would
be instructive to consider an oven model consisting of
infinite parallel plates, analogous to an infinite parallel
plate capacitor as used to study capacitance (fig. 8).  This
can also be thought of as a cylindrical oven with infinite
radius.  The spherical zero gradient oven required
spherical symmetry.  The infinite cylindrical oven merely
requires (for zero gradient operation) that heater power

dissipation and insulation thermal conductance be uni-
form per unit area.  It will be assumed that height re-
strictions prohibit placing thermistors above or below the
crystal.  If the crystal and thermistor are coplanar, the
oven will be immune as in the spherical case to the z-
component of externally induced first order gradients.   If
two or more averaging thermistors are used, the oven
will be immune to all first order gradients, and have re-
duced degradation from higher order gradients, again for
the same reasons as in the spherical case.

xtal T

thermistoroven mass heater
insulation

Figure 8.  Infinite cylindrical oven.

There is one aspect of the thermistor averaging
concept that doesn’t behave in an analogous way to the
spherical case.  In the spherical case, it is impossible for
an  external heat source or heat leak to cause a radial
gradient (spherical coordinates) originating from within
the oven mass; only the internal thermal overhead can do
that.  However, with a cylindrical oven, an external heat
source directly above or below the crystal will generate a
radial gradient (cylindrical coordinates) originating from
the center of the crystal.  This will cause the crystal to be
warmer than the thermistor(s) and reduce thermal gain.
Multiple thermistor averaging coplanar with the crystal
does not reduce the error due to these radial gradients.
To do that would require thermistors above and below
the crystal, which have been previously ruled out.

A finite cylinder with a guard ring

As a first step toward a finite cylindrical oven,
consider partitioning the infinite cylinder into a finite
cylinder separated from an infinite “guard ring” by an
infinitesimal gap (fig. 9).  There will be no heat flow
across the gap because there were no gradients across its
boundary before it was created.  Although creating the
infinite guard ring had no negative side effects, the end
result is still unrealizable, but is a transition to the finite
guard ring configuration (fig. 10). If the guard ring is
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assumed to be isothermal and somehow held at the same
temperature as the oven mass surface adjacent to the gap,
then there will be no radial heat flow in the interior por-
tion of the gap.  Ideally, at the surface of the gap, the
heat flow would be essentially axial.  However, the tran-
sition between radial heat flow from the outer rim of the
guard ring to axial heat flow from the top and bottom
surfaces does not happen abruptly.  Rather, there is a
gradual transition such that the degree of “fringing” at
the gap depends on the radial width of the guard ring
relative to the insulation thickness.  These fringing ef-
fects are localized to the immediate area of the rim and
become negligible at the gap if the guard ring is at least a
few times wider than the thickness of the insulation.  If
this is the case, and the guard ring temperature is main-
tained at the oven mass set point, the oven mass will
have been effectively thermally “terminated” at a finite
radius, without loss of zero gradient status.

xtal T

guard ring
gaps

cylinder

infinite

Figure 9.  Finite oven, with infinite guard ring.
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Figure 10.  Radial double oven with finite guard ring.

A radial double oven

The most significant difference between the in-
finite guard ring and the finite guard ring is the tech-
nique for maintaining the guard ring temperature.
Whereas the infinite guard ring was guaranteed by de-

sign to remain at the same temperature as the oven mass
due to uniform per unit area heat flows, there is no such
automatic mechanism with the finite guard ring.  This is
because there is no simple relationship between the heat
loss from the newly created rim and the pre-existing
surfaces of the oven.  One way of regulating the tem-
perature would be to add a sensing thermistor to the
guard ring and independently servo its heaters to main-
tain the set point (fig. 10).  This forms a double oven of
sorts, except that it is double only in the radial direction,
not the z direction.  Also, unlike a conventional double
oven, the inner and outer sections operate at the same set
point.  By maintaining a zero temperature difference
across the gap, the outer oven prevents radial heat flow
across the gap just as in the case of the infinite guard
ring.  A difference compared to the infinite guard ring is
that now there is radial heat flow at the outer rim of the
guard ring.  In order for the ring to appear to be infinite
as far as the oven mass is concerned, the heat flow
should be purely axial (i.e., non-fringing) at the inner
rim of the ring where the gap forms.  This requires that
the guard ring have sufficient radial width to allow for a
transition zone with mixed radial and axial heat flow.
As a rule of thumb, if the guard ring is several times as
wide (radially) as the insulation thickness, the fringing
will be negligible.

An “open loop” double oven

If a radial double oven of any reasonable design
is simulated theoretically or measured experimentally, it
is found that the result of the guard ring being servo’ed
to the same set point as the oven mass is that the guard
ring heater power tracks the oven mass heater power in a
constant proportion as ambient temperature varies.
Hence the secondary control loop can be eliminated by
simply controlling both heaters in the proper constant
proportion with the oven mass servo.  If the ovens are
reasonably repeatable, the same ratio can be used on all
units.

The disadvantage of this simpler technique is
that there is no feedback to correct for an error in esti-
mating the required heat ratio.  If the guard ring receives
more heat than is required to maintain it at the set point,
the guard ring temperature will rise above the oven mass
set point and the excess heat will flow either radially
inward to the oven mass, or as increased flow to the am-
bient.  In order for the guard ring to guard the oven mass
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properly, the gap needs to be small enough so that the
thermal conductance across it is large compared to the
thermal conductance to the ambient.  If this criterion is
met, then most of any excess guard ring heat will flow
radially inward into the oven mass.  The temperature
controller will adjust for this excess heat by decreasing
the heat to the oven mass heater slightly.  There will be a
net radial flow of heat inward within the oven mass (then
axially outward), thereby generating a thermal gradient
that will reduce thermal gain.

The size of this gradient will be a function of
the thermal conductance of the oven mass and the ther-
mal current.  The heat flow depends only on the heat
ratio error.  If the gap were to be made half as wide, thus
twice as conductive, it would not change the heat flow;
rather it would halve the small temperature difference
between the oven mass and the guard ring.  The induced
gradients within the oven mass would be the same as
before, hence the thermal gain would be the same.  This
argument can be continued until the gap width goes to
zero and the gap ceases to exist.

A practical cylindrical oven

Eliminating the gap produces a contiguous as-
sembly that has two loosely defined zones (fig. 11).  The
outer area, formerly the guard ring, is a transition zone
between the radial heat flow at the rim and the axial heat
flow in the center.  The guard ring heater becomes the
rim heater on the new assembly.  The inner area, for-
merly the oven mass, is the (ideally) zero gradient zone,
with heat flow from the oven mass to the can being es-
sentially all in the axial direction. The temperature sen-
sitive components, such as the crystal, should be located
within the zero gradient area.  They will then enjoy the
benefits of zero gradient operation, to the extent that the
ratio of rim to face heat is correct, so that there is no heat
flow between the faces and the rim through the oven
mass.

Fig. 12 shows simplified temperature vs. posi-
tion profiles of the oven mass assembly, with ambient
temperature as a parameter.  Note that at the thermistor
radius, r = T,  the temperature is always perfectly regu-
lated to the oven set point.  This invariant radius is indi-
cated by a dot, which can be thought of as a thermal
pivot (fig. 12).  If too little rim heater power is applied,
the face heaters will supply heat to the interior, which
will flow outward to the rim.  Similarly, if too much rim

heater power is applied, it will flow radially inward and
then axially outward.  These flows cause corresponding
gradients as shown.

.
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Figure 11.  Oven design used in real oscillator.

Since heater power is approximately proportional to the
temperature difference between the set point and ambi-
ent, the gradients are also proportional to this difference.
Assuming the crystal is located within the thermistor
radius, it will experience positive thermal gain if there is
too little rim heat and negative thermal gain if there is
too much rim heat.  Oscillator circuit components that
are located outside of the thermistor radius experience
the opposite sign of thermal gain compared compared
with the crystal.  If the crystal is effectively coupled
thermally to the center point of the cylinder, r = 0, it will
have the minimum thermal gain.  However, if the crystal
is mounted by its rim only, and thermally isolated from
the center area of the oven mass, then its effective radius
of attachment can be moved out to near the thermistor
radius.  This will raise its thermal gain substantially.
Another way of thinking about this is that the radial heat
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flow through the oven mass is now shunted around the
crystal harmlessly instead of flowing through it.
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Figure 12.  Thermal gain vs radius.

 Finite element analysis

In order to help confirm the validity of the
above analysis, it was useful to try it out on a specific
oven design and look at the numerical results, the
“proof” being in the numbers.  The oven shown in fig 12
was modeled by dividing it radially and axially into sev-
eral hundred rings of “small” thickness and width.  An
electrical analog of the thermal model was made, with
each ring representing a circuit node.  Each node was
connected to each of its nearest neighbors by a resistor
representing the average thermal resistance of the two
rings.  The heater was modeled as an array of grounded
current sources, and the outer can was “grounded” to
represent a perfectly conducting can, perfectly coupled to
ambient.  Voltage at each node is then a proxy for the
node temperature, and the goal is to have no voltage gra-
dient in the electrical model.  The electrical model was
analyzed using SPICE and then manipulated to simulate
varying ambient temperature.  The change of tempera-
ture at each node vs. change in ambient allowed thermal

gain to be calculated as a function of position.  Two ad-
vantages of doing the modelling this way instead of with
a dedicated FEA program are that the analysis was car-
ried out in cylindrical coordinates thus matching the
symmetry of the problem and that non-uniform element
sizes were used to avoid fractional elements.

T T

Center Thermistor EdgeOuter floorRim

Figure 13.  Definitions for table 1.

Heat distribu-
tion

Center Outer
floor

Edge Rim

Uniform face,
rim, edge htrs

660Κ +150K -660K +78K

9 0% face, 50%
rim, no edge

htrs

∞ -330K +13K -25K

80% + periph-
eral face, no

rim htr

+ 1.3Μ -660K +2.5K +2.5K

Uniform face
only

− 3Κ +650 +550 +550

Table 1.  Thermal gain vs heat distribution.

The results are summarized in table 1 for loca-
tions as defined by fig. 13.  Note that the thermal gain at
the thermistor is always infinity.  For the oven being
analyzed, the thermistor is located about 1/3 of the way
towards the rim, just outside the crystal package.  The
initial configuration tried to match the heat to the load
perfectly by having 100% coverage of the faces and rim
plus a separate edge heater.  Simplifications to this ideal
zero gradient heater configuration were then made by
omitting the edge heater, for instance, and adding the
heat it would have contributed to the rim heater, or by
scaling back all heaters from wall-to-wall coverage.
Note that the total amount of power is essentially inde-
pendent of the heat distribution configuration.  The sim-
plified heater schemes resulted in local gradients con-
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fined to the rim area.  The thermal gain over 80% to
90% of the oven area was unaffected by these deviations.

What the analysis showed was that the configu-
ration of the rim heater wasn’t critical and, in fact, the
rim can be heated from the periphery of the face, if the
thermal gain at the rim is not critical.  Different configu-
rations merely resulted in somewhat different values for
the face/rim heat ratio, and changes in the gradients in
the transition zone.  In all cases, the ratio could be ad-
justed to provide zero gradient over 80% of the oven
mass area.  Furthermore, if the face heater radius was
scaled back so that it did not go all the way to the edge,
the zero gradient condition was still easily achievable
over a slightly decreased radius.  The oven was also
modeled with the rim heat turned off.   As expected, a
significant thermal gradient appears and the thermal
gain is reduced drastically.  The thermal gain without
rim heat provides an important benchmark, because it
indicates how sensitive the thermal gain is to errors in
the heat ratio.  At the center of the cylinder, the thermal
gain without rim heat is about 3,000.  Hence, if the heat
ratio could be adjusted to within 1% of the optimum
value, the thermal gain there would be raised to 300,000.

Importance of the outer can

In the spherical oven, the outer can protected
against external heat sources and asymmetrical heat
leaks.  This is equally true in the cylindrical case and
even more important because of the decreased symmetry
of the cylindrical shape.  For the cylindrical oven dis-
cussed in this paper, there is only sufficient space avail-
able for a thin layer of thermal insulation.  As a result,
about 1/8 of the total thermal resistance from the oven
mass to ambient consists of the thermal resistance from
the outer can to the ambient.  The thermal resistance
outside the can can be broken down into face and rim
components.  The ratio of these components is a function
of ambient temperature because of effects such as con-
vection.  It is also a function of how the oven assembly is
mounted.  Most external influences tend to affect the
faces differently from the rim.  If the changes in face vs
rim heat flow outside the can are permitted to propagate
to the inside of the can and affect the face/rim thermal
resistance between the can and the oven mass, the heater
ratio setting will be corrupted.  A high thermal conduc-
tivity can greatly increase the isolation of this ratio from
ambient.  Although this effect was not modeled in the

FEA study, it was measured experimentally as described
below.

Experimental results

The oven was evaluated experimentally as part
of the oscillator described in [3] .  The oven was
equipped with an SC-cut crystal and the oscillator was
modified to operate in mode B instead of mode C, as it
normally does.  The tempco of the crystal in mode B
(~300 Hz/°C) is 4 orders of magnitude higher than in
mode C.1  Using mode B gives much higher resolution
and also guarantees that crystal temperature and thermal
gain are being measured instead of the tempco of the
oscillator circuit.  The face and rim heaters were sepa-
rately programmable so that the ratio of face to rim heat
could be adjusted in approximately 1% steps.  The ambi-
ent temperature was stepped from -60° C to +90° C in
25° steps.  The oscillator assembly was placed on a wire
rack in the center of an environmental test chamber, and
exposed to the normal air circulation of the chamber, i.e.,
this was not a still air test.
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Figure 14.  Measured thermal gain of oven.

Fig. 14 shows a typical oven with optimum heat
ratio.  The smooth stairstep curve indicates air tempera-
ture (right vertical axis) and the noisy curve indicates
mode B oscillator frequency which is a proxy for crystal
temperature (left vertical axis).  Over the 150°C ambient
range, the crystal temperature stays within a range of 100
µ°C, which could perhaps be described as an “integral”
thermal gain of 1.5 million, the ratio between the two
temperature ranges (the descriptor “integral” having
been borrowed from conventions used for characterizing
DACs.)  A “differential” thermal gain could also be de-
                                                       
1 This assumes, in mode C, an oven set point reasonably
close (±½°C) to a turnover.
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fined by the worst case behavior of an individual step.
This would be the 70 µHz change in crystal temperature
between 15° and 40°  This results in a differential ther-
mal gain of 350,000.
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Figure 15.  Effect of fan (copper outer can).

To test the effect of external perturbations on
the thermal gain, a 100 mm diameter fan was mounted
within a cm of the outer can.  Fig. 15 shows the effect on
the crystal temperature of turning on the fan.  The ther-
mal gain is reduced from over a million to about
150,000.  For this test a copper can was used.  Fig. 16
shows the fan test repeated except that the copper outer
can was replaced by an otherwise identical stainless steel
can.2  Note the change in scale on the vertical axis.  In
this case, the fan lowers the thermal gain to about
50,000.  An interesting side effect is that the transient
error caused by the rapid steps in ambient temperature is
more severe in both magnitude and duration in the
stainless steel case.

Conclusions

A theoretical foundation for zero gradient oven
techniques has been established.  It has been applied to a
practical cylindrical oven that has been  demonstrated to
have extremely high thermal gain to the crystal.  The
oven also maintains high thermal gain to the oscillator
circuit area.  These gains are maintained over a wide
range of ambient temperatures and environmental air
flows by proper use of insulation and mechanical con-
struction.  It enables the height of the oven to be lower
and the maximum operating ambient temperature to be
higher than would be possible with a double oven.

                                                       
2 Copper has about 30 times the thermal conductivity of
stainless steel.
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Figure 16.  Effect of fan (stainless steel outer can).
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